Skip to main content

Timbr JDBC Connector

This is a sample for connecting to Timbr using JDBC and Python.

Dependencies

  • Access to a Timbr Server service
  • Python version 3.9.13 or newer
  • Java 11 / Java 17 / Java 21

Installation

Sample usage

  • For an example of how to use the Python connector for Timbr:
  • For an example of using the Timbr Python connector with Pandas:
    • Make sure you have the pandas library installed, or you can install it by running pip install pandas
    • Create connection with params, follow this Example File
    • Create JDBC connection, follow this Example File

Connection parameters examples

Parameters for basic connection

Generic example and explanation for each parameter

  hostname = '<TIMBR_IP/HOST>'
port = '<TIMBR_PORT>'
ontology = '<ONTOLOGY_NAME>'
username = '<token/TIMBR_USER>'
password = '<TOKEN_VALUE/TIMBR_PASSWORD>'
enabled_ssl = '<false/true>'
http_path = '<TIMBR_SERVER_HTTP_PATH>'

# hostname - Required - String - The IP / Hostname of the Timbr server (not necessarily the hostname of the Timbr platform).
# port - Required - String - The port to connect to in the Timbr server. Timbr's default port with enabled_ssl is 443 without SSL is 11000.
# ontology - Required - String - the ontology / knowledge graph to connect to.
# username - Required - String - Use 'token' as the username when connecting using a Timbr token, otherwise its the user name.
# password - Required - String - Should be the token value if using a token as a username, otherwise its the user's password.
# enabled_ssl - Optional - String - 'true' if SSL is enabled, 'false' if SSL is disabled. The default value is 'true'.
# http_path - Optional - String - Use only if your timbr server http path is not '/timbr-server'. The default value is '/timbr-server'.

HTTP example

  hostname = 'mytimbrenv.com'
port = '11000'
ontology = 'my_ontology'
username = 'timbr'
password = 'StrongPassword'
enabled_ssl = 'false'
http_path = '/timbr-server'

HTTPS example

  hostname = 'mytimbrenv.com'
port = '443'
ontology = 'my_ontology'
username = 'timbr'
password = 'StrongPassword'
enabled_ssl = 'true'
http_path = '/timbr-server'

Parameters for JDBC connection

Generic example and explanation for each parameter

  jdbc_url = '<TIMBR_JDBC_CONNECTION_URL>'
username = '<token/TIMBR_USER>'
password = '<TOKEN_VALUE/TIMBR_PASSWORD>'

# jdbc_url - Required - String - The JDBC connection url.
# username - Required - String - Use 'token' as the username when connecting using a Timbr token, otherwise its the user name.
# password - Required - String - Should be the token value if using a token as a username, otherwise its the user's password.

HTTP example

  jdbc_url = 'jdbc:hive2://mytimbrenv.com:11000/my_ontology;transportMode=http;ssl=false;httpPath=/timbr-server'
username = 'timbr'
password = 'StrongPassword'

HTTPS example

  jdbc_url = 'jdbc:hive2://mytimbrenv.com:443/my_ontology;transportMode=http;ssl=true;httpPath=/timbr-server'
username = 'timbr'
password = 'StrongPassword'

Create new connection

Create a basic connection

Generic example

  conn = pytimbr.get_connection(
hostname,
port,
ontology,
username,
password,
enabled_ssl,
http_path
)

HTTP example

  conn = pytimbr.get_connection(
'mytimbrenv.com',
'11000',
'my_ontology',
'timbr',
'StrongPassword',
'false',
'/timbr-server'
)

HTTPS example

  hostname = 'mytimbrenv.com'
port = '443'
ontology = 'my_ontology'
username = 'timbr'
password = 'StrongPassword'
enabled_ssl = 'true'
http_path = '/timbr-server'

Create a JDBC connection

Generic example

  conn = pytimbr.get_jdbc_connection(
jdbc_url,
username,
password
)

HTTP example

  conn = pytimbr.get_jdbc_connection(
"jdbc:hive2://mytimbrenv.com:11000/my_ontology;transportMode=http;ssl=false;httpPath=/timbr-server",
'timbr',
'StrongPassword'
)

HTTPS example

  conn = pytimbr.get_jdbc_connection(
"jdbc:hive2://mytimbrenv.com:443/my_ontology;transportMode=http;ssl=true;httpPath=/timbr-server",
'timbr',
'StrongPassword'
)

Execute a query

  # Use the connection to execute a query
with conn.cursor() as curs:
# Execute query
curs.execute('SHOW CONCEPTS')

# Fetch results
concepts = curs.fetchall()

# Print returned object headers
# Option 1 - Recommended
for i in range(1, curs._meta.getColumnCount() + 1):
print(curs._meta.getColumnName(i) + " - " + curs._meta.getColumnTypeName(i))

# Option 2- DBAPI
for col in curs.description:
print(col[0] + " - " + col[1].values[0])

# Print the results
for concept in concepts:
print(concept)

Execute a query using Pandas

  import pandas
# Execute a query using Pandas
df = pandas.read_sql("SELECT * FROM timbr.person limit 1000", conn)
print("--------------------------------------")
print(df)
print("--------------------------------------")
print(df.columns)
print("--------------------------------------")
print(df.count())

Licensing

This project is licensed under the MIT License. It includes third-party dependencies with different licenses:

Third-Party Dependencies

  • JPype1 (version 1.5.1): Dual-licensed under GPL-2.0 and Apache License 2.0

JPype1 License: GPL-2.0 and Apache License 2.0

The JPype1 package is available under both the GPL-2.0 and the Apache License 2.0, and you can choose to use it under either of these licenses:

  • GPL-2.0: If you choose the GPL-2.0 license, you must comply with its terms, including providing attribution, distributing the source code, and adhering to the requirements for redistribution.
  • Apache License 2.0: If you choose the Apache License 2.0, you can use, modify, and distribute the code, as long as you comply with the terms of the Apache License, which generally involves attribution and inclusion of a copy of the license when redistributing the code.

For full details on the licenses visit the links below: